

Solvothermal Synthesis of $\text{NiS}_{2-x}\text{Se}_x$ Nanocrystallines

Chunrui Wang,^{†,‡,††} Kaibin Tang,^{*,†} Qing Yang,[†] Changhua An,[†] and Yitai Qian^{*,†}

[†]Structure Research Laboratory and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

^{‡,††}Department of Physics, HuaiBei Coal Industry Teacher's College, HuaiBei, Anhui 235000, P. R. China

(Received April 9, 2001; CL-010320)

$\text{NiS}_{2-x}\text{Se}_x$ nanocrystallines ($0 \leq x \leq 2$) was successfully synthesized by solvothermal method at 180–200 °C. It was found that both temperature and solvent have important effects on the formation of $\text{NiS}_{2-x}\text{Se}_x$ nanocrystallines.

Metal-insulator transitions (MIT) caused by strong electron correlation have been the subject of extensive research continuous in recent decades,¹ but the discovery of superconductivity and related MIT in some copper oxide based materials has led to increase attention to this phenomenon. The $\text{NiS}_{2-x}\text{Se}_x$ system is believed to be a good candidate to obtain valuable information about MIT and to shed light on the physics of the new superconductors.² The $\text{NiS}_{2-x}\text{Se}_x$ system has been extensively investigated due to its rich phase diagram and interesting transport properties.^{3–6} For $x < 0.4$ it is a semiconductor at all temperatures. For $x > 0.6$ it is metallic at all temperature. For $0.4 < x < 0.6$ it is a semiconductor at high temperature, but under a critical temperature that depends on x , the materials undergo an insulator-metal transition. At the transition there is no any apparent structural distortion.^{7–9}

$\text{NiS}_{2-x}\text{Se}_x$ crystals are usually prepared by the chemical vapor transport operation with involving chlorine or bromine as the transport agent^{4,5} or the Te flux method⁹ at 730–780 °C.

Semiconductor nanoparticles have some special characteristics due to their large surface-to-volume ratio, quantum size effect, and dielectric confinement effect.^{10–15} They are expected to exhibit a variety of new spectroscopic features, including sharper absorption spectra, enhanced exciton and impurity binding energies, and modified electron–phonon coupling, which depend sensitively on both size and shape,^{16,17} are of both fundamental and technological interest.

During recent years, the solvothermal method was emerging as an effective synthetic technique for chalcogenides.¹⁸ In this paper, we report the synthesis of $\text{NiS}_{2-x}\text{Se}_x$ nanocrystallines at much lower temperature via a solvothermal method.

Analytically pure $\text{NiCl}_2 \cdot 6\text{H}_2\text{O}$, elemental S and Se powder (molar ratio 1: 2–x: x, $0 \leq x \leq 2$) were put into a 50 mL autoclave, which filled with solvent up to 80% of total volume. In the experiments ethylenediamine (en) and pyridine (py) (volume ratio 1:1) were selected as the reaction media. The autoclave was maintained at 180–200 °C for 8–10 h and cooled naturally to room temperature. The products were filtered, washed with anhydrous alcohol and distilled water, and dried in a vacuum at 60 °C for 2 h.

X-ray powder diffraction (XRD) pattern was obtained on a Rigaku Damax γA X-ray diffractometer with $\text{Cu K}\alpha$ radiation ($\lambda=1.54178 \text{ \AA}$). Transmission electron microscopy (TEM) images were taken with a Hitachi H-800 transmission electron microscopy, using an accelerating voltage of 200 kV.

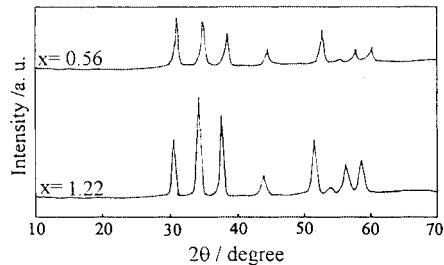


Figure 1. XRD patterns of the as-prepared $\text{NiS}_{2-x}\text{Se}_x$.

Figure 1 shows the XRD pattern of as-prepared $\text{NiS}_{2-x}\text{Se}_x$ ($x=0.56, 1.22$). Se content x is determined from the energy dispersion X-ray fluorescence analysis of the as-prepared samples. The $\text{NiS}_{2-x}\text{Se}_x$ system characterized as pyrite type structure. Figure 2 is the energy dispersion X-ray fluorescence analysis (EDAX) spectrum of the as-prepared $\text{NiS}_{2-x}\text{Se}_x$ ($x=0.56, 1.22$).

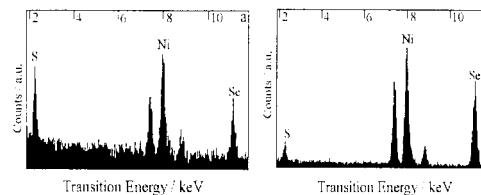


Figure 2. EDAX spectrum of as-prepared $\text{NiS}_{2-x}\text{Se}_x$.
(a) $x=0.56$; (b) $x=1.22$.

The TEM images of $\text{NiS}_{2-x}\text{Se}_x$ ($x = 0.56, 1.22$) are shown in Figure 3. It can be seen that $\text{NiS}_{2-x}\text{Se}_x$ consisted of particles with an average size of 10 nm. The particles are easily coalesced. The size of $\text{NiS}_{2-x}\text{Se}_x$ ($x > 1.6$) increased as the Se content increase.

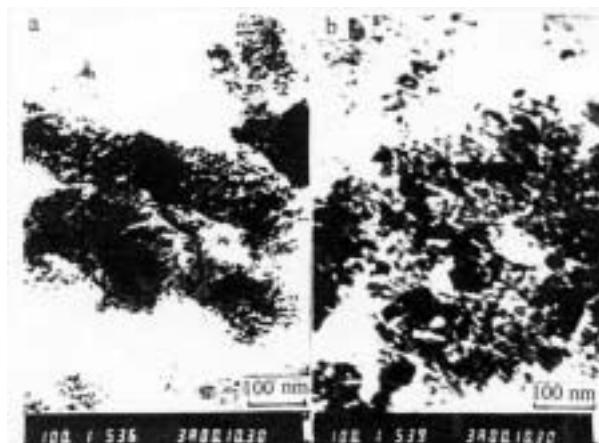


Figure 3. TEM images of as-prepared $\text{NiS}_{2-x}\text{Se}_x$. (a) $x=0.56$; (b) $x=1.22$.

It was found that both of temperature and solvent play an important role on the formation of $\text{NiS}_{2-x}\text{Se}_x$ ($0 \leq x \leq 2$) nanocrystallines. In our present study, no NiS_2 or NiSe_2 can be obtained if the reaction temperature is lower than 140°C . Therefore, we believe that more energy will be needed solid solution of $\text{NiS}_{2-x}\text{Se}_x$ in comparison with that of NiS_2 or NiSe_2 single phase. Our result showed that the miscellaneous diffraction peaks would be present in the X-ray diffraction patterns if the reaction temperature lower than 180°C , indicating that the solid solution process does not take place effectively. If the higher temperatures ($T > 180^\circ\text{C}$) are employed and py and en are selected as solvent, the composition range for the solid solution of $\text{NiS}_{2-x}\text{Se}_x$ is much extended. If a single solvent is used, the composition range is very limited. For example, no $\text{NiS}_{2-x}\text{Se}_x$ ($x > 0.6$) can be obtained when py is selected as a solvent; No $\text{NiS}_{2-x}\text{Se}_x$ ($x < 1.6$) can be obtained when en is selected as a solvent. A possible reason is that the product of the reaction between $\text{NiCl}_2 \cdot 6\text{H}_2\text{O}$ and S in en at $180\text{--}200^\circ\text{C}$ is NiS and NiS_2 . No NiSe_2 can be obtained in py at $180\text{--}190^\circ\text{C}$. The effect of other solvents such as toluene, tetrahydrofuran, benzene on the formation of $\text{NiS}_{2-x}\text{Se}_x$ nanocrystallines was also studied. However, the reaction among $\text{NiCl}_2 \cdot 6\text{H}_2\text{O}$, S and Se did not occur when those solvents selected as reaction media. The optimum condition is py and en (volume ratio 1:1) selected as solvent at $190\text{--}200^\circ\text{C}$.

In a summary, $\text{NiS}_{2-x}\text{Se}_x$ ($0 \leq x \leq 2$) nanocrystallines were successfully prepared through a solvothermal route at relatively low temperature. It was found that both reaction temperature and solvents play a key role in the formation of $\text{NiS}_{2-x}\text{Se}_x$ nanocrystallines. The MIT properties of as-synthesized $\text{NiS}_{2-x}\text{Se}_x$ nanocrystallines are in progress.

Financial support by the National Natural Science Foundation of China is gratefully acknowledged.

References

- 1 N. F. Mott, "Metal-Insulator Transitions, " Taylor and Francis, London (1990); K. Mamiya, T. Mizokawa, A. Fujimori, T. Miyadai, N. Chandrasekharan, S. R. Krishnakumar, D. D. Sarma, H. Takahashi, N. Mori, and S. Suga, *Phys. Rev. B*, **58**, 9611 (1998).
- 2 J. G. Rodrigo, S. Vieira, P. Somasundaram, J. M. Honig, F. A. Chudnovsky, and V. N. Andreev, *Phys. Rev. B*, **58**, 10256 (1998); H. Watanabe and S. Doniach, *Phys. Rev. B*, **57**, 3829 (1998).
- 3 J. M. Honig and J. Spalek *Chem. Mater.*, **10**, 2910 (1998).
- 4 R. J. Bouchard, J. L. Gillson, and H. S. Jarrett, *Mater. Res. Bull.*, **8**, 489 (1973); J. A. Wilson and G. D. Pitt, *Phil. Mag.*, **23**, 1297 (1971).
- 5 P. Kwizera, M. S. Dresselhaus, and D. Adler, *Phys. Rev. B*, **21**, 2328 (1980).
- 6 H. Tanako and A. Okiji, *J. Phys. Soc. Jpn.*, **50**, 3835 (1981).
- 7 S. Endo, T. Mitsui, and T. Miyada, *Phys. Lett. A*, **46**, 29 (1973).
- 8 X. Yao, J. M Honig, T. Hogan, C. Kannewurf, and J. Spelek, *Phys. Rev. B*, **54**, 17469 (1996).
- 9 A. Husman, D. S. Jin, Y. V. Zastavker, T. F. Rosenbaum, X. Yao, and J. M. Honig, *Science*, **274**, 1874 (1996).
- 10 J. Voit, *Rep. Prog. Phys.*, **58**, 977 (1994).
- 11 C. M. Lieber, and X. L. Wu, *Acc. Chem. Res.*, **24**, 107 (1991).
- 12 J. Hu, T. W. Odom, and C. M. Lieber, *Acc. Chem. Res.*, **32**, 435 (1999).
- 13 S. H. Yang, S. H. Wang, and K. K. Fung, *Pure Appl. Chem.*, **72**, 119 (2000).
- 14 A. P. Alivisatos, *Science*, **271**, 933 (1996).
- 15 C. M. Lieber, J. Liu, and P. E. Sheehan, *Angew. Chem., Int. Ed. Engl.*, **35**, 687 (1996).
- 16 C. M. Lieber, *Solid State Commun.*, **107**, 607 (1998).
- 17 R. E. Smalley and B. I. Yakobson, *Solid State Commun.*, **107**, 597 (1998).
- 18 W. S. Sheldrich and M. Wachhold, *Angew. Chem., Int. Ed. Engl.*, **36**, 206 (1997).